大家好,今天小编关注到一个比较有意思的话题,就是关于机器学习案例 python的问题,于是小编就整理了4个相关介绍机器学习案例 Python的解答,让我们一起看看吧。
机器学习实践:如何将Spark与Python结合?
4.Spark Context对象将应用程序发送给执行者。
5.Spark Context在每个执行器中执行任务。
人工智能+Python学习路线有吗?
深度学习--》Python实现(CNN能实现就够了,这是斯坦福对研究生的标准)
第一个推荐看和西瓜书,能实现的尽量实现,一般来说,比较新比较复杂的算法,书里面都没出现,所以说实现的难度还是不高的
第二种,推荐看cs231n的视频,然后就要去看近几年的论文,
机器学习-如何通过Python快速入门机器学习?
想快速入门的话,你可以这么看机器学习. 把每个机器学习算法看成一个函数,你只关心他的输入输出是什么就行,这样只要有点编程基础的话就都会使用机器学习了!这个级别的就看看python的sklearn包的机器学习算法模型怎么调用就行。应用性的机器学习算法的学习可以多看看Jason Brownlee的blog,有很多例子很容易上手
再进一步的话,就对每个算法函数的参数去多做点了解,比如把某一个参数调大调小会有什么影响等等。当模型出现结果不好时,能大概知道怎么去调动参数做优化。还有就是了解下怎么去评估一个算法的好坏,当数据平衡不平衡时分别用什么metrics比较好。以及怎么处理under-fittinng 和over-fitting问题。
在快速入门也知道怎么使用这些模型时,可以花时间具体去看看每个算法的具体理论,以及他们的优缺点,这样碰到不同问题就会大概知道选用什么方法去解决了!
python做机器学习的话有哪些推荐的书跟课程?
机器学习:
1.理论研究和推导可以看周志华老师的《机器学习》,也称为西瓜书,里面讲了各种算法的推导,比如线性回归,k值最近邻,支撑向量机等可解释模型,缺少神经网络的具体讲解。(还有一点就是其中不涉及到代码)
2.被奉为神作的是一本名为《Hands-On Machine Learning with Scikit-Learn,Keras&TensorFlow》,这把机器学习的讲解和代码结合在一块,从线性回归到支撑向量机再到深度学习都有设计(但以机器学习为主)
3.《机器学习实战》,真本书是一本比较经典的书,书比较老了,但是讲的挺好,这本书主要偏重代码,没有涉及到深度学习
深度学习:
1.理论研究的话可以参考花书《深度学习》,这本书纯粹讲理论推导,不涉及代码,是一本比较经典的书
2.《TensorFlow深度学习》,这本书Github上有免费的电子版,把深度学习的TF2.0相结合,俗称龙书,应该是TF书里面比较好的了
3.《动手学深度学习》pytorch版,这本书是把深度学习和Pytorch相结合,是Pytorch里面比较好的书籍了
课程的话:入门机器学习可以看吴恩达的课,主要是我一般喜欢看书自己学[捂脸][捂脸][捂脸]
到此,以上就是小编对于机器学习案例 python的问题就介绍到这了,希望介绍关于机器学习案例 python的4点解答对大家有用。