大家好,今天小编关注到一个比较有意思的话题,就是关于java语言模型的问题,于是小编就整理了2个相关介绍Java语言模型的解答,让我们一起看看吧。
自然语言处理有预训练好的模型么?
在计算机视觉领域,我们知道有很多预训练权重,例如vgg、resnet、densenet、mobilenet、shufflenet等等。在NLP领域,这方面的预训练模型目前并不是很多,不过很多NLP领域的开发人员也正在尝试完善该方向。目前也取得了一些成果,例如ELMo、ULMFiT 和 OpenAI Transformer,它们通过预训练语言模型在很多NLP的任务中取得了很不错的效果。下面依次介绍这几个模型。
ELMo是一种深度语境化的词汇表征模型,它既对词所使用的复杂特征(例如语法和语义)进行建模,也建模了当这些词使用在不同的上下文(即模型一词多义)时的情形。这些词向量是深度双向语言模型(biLM)内部状态的学习函数,该模型在大型文本语料库上进行预训练。它们可以很容易地添加到现有的模型中,并且显著地提高了NLP在实际中的效果,包括问题回答、文本蕴含和文本情感分析。
ELMo官方网站:
ELMo github地址:
在OpenAI Transformer中也用到了预训练模型,他们通过无监督学习提高语言理解能力,已经在一系列不同的语言任务中获得了很不错的结果。方法是两种现有思想的结合:transformers和无监督的预训练。研究人员在大量数据上训练一个transformer模型,利用语言建模作为训练信号,然后在稍小的监督数据集上对模型进行微调,以帮助解决特殊任务。
OpenAI Transformer github地址:
OpenAI Transformer论文介绍地址:
ULMFiT认为可以在大型的语料库上预训练语言模型(例如***),然后创建分类器。但是我们的文本数据可能跟模型训练的文本数据有着一些差异,所以我们需要对其中的参数进行一些微调,将这些差异能够加入到模型中。然后,在语言模型的顶层添加一个分类图层,并且只训练这个图层。
谢谢邀请,有的,在一本书中看到过《python3破冰人工智能 从入门到实战》
在第八章中,不过本书没有电子版的,只能网购纸质版的
第8章 自然语言处理8.1 Jieba分词基础
8.1.1 Jieba中文分词
8.1.2 Jieba分词的3种模式
8.1.3 标注词性与添加定义词
8.2 关键词提取
8.2.1 TF-IDF关键词提取
8.2.2 TextRank关键词提取
8.3 word2vec介绍
8.3.1 word2vec基础原理简介
8.3.2 word2vec训练模型
8.3.3 基于gensim的word2vec实战
其他章节如下:
1.1 数学建模1.1.1 数学建模与人工智能1.1.2 数学建模中的常见问题1.2 人工智能下的数学1.2.1 统计量1.2.2 矩阵概念及运算1.2.3 概率论与数理统计1.2.4 高等数学——导数、微分、不定积分、定积分第2章 Python快速入门
2.1 安装Python2.1.1 Python安装步骤2.1.2 IDE的选择2.2 Python基本操作2.2.1 第 一个小程序2.2.2 注释与格式化输出2.2.3 列表、元组、字典2.2.4 条件语句与循环语句2.2.5 break、continue、pass2.3 Python高级操作2.3.1 lambda2.3.2 map2.3.3 filter第3章 Python科学计算库NumPy
3.1 NumPy简介与安装3.1.1 NumPy简介3.1.2 NumPy安装3.2 基本操作3.2.1 初识NumPy3.2.2 NumPy数组类型3.2.3 NumPy创建数组3.2.4 索引与切片3.2.5 矩阵合并与分割3.2.6 矩阵运算与线性代数3.2.7 NumPy的广播机制3.2.8 NumPy统计函数3.2.9 NumPy排序、搜索3.2.10 NumPy数据的保存第4章 常用科学计算模块快速入门
4.1 Pandas科学计算库4.1.1 初识Pandas4.1.2 Pandas基本操作4.2 Matplotlib可视化图库4.2.1 初识Matplotlib4.2.2 Matplotlib基本操作4.2.3 Matplotlib绘图案例4.3 SciPy科学计算库4.3.1 初识SciPy4.3.2 SciPy基本操作4.3.3 SciPy[_a***_]处理案例第5章 Python网络爬虫5.1 爬虫基础5.1.1 初识爬虫5.1.2 网络爬虫的5.2 爬虫入门实战5.2.1 调用API5.2.2 爬虫实战5.3 爬虫进阶—高效率爬虫5.3.1 多进程5.3.2 多线程5.3.3 协程5.3.4 小结第6章 Python数据存储
6.1 关系型数据库mysql6.1.1 初识Mysql6.1.2 Python操作MySQL6.2 NoSQL之MongoDB6.2.1 初识NoSQL6.2.2 Python操作MongoDB6.3 本章小结6.3.1 数据库基本理论6.3.2 数据库结合6.3.3 结束语第7章 Python数据分析
7.1 数据获取7.1.1 从键盘获取数据7.1.2 文件的读取与写入7.1.3 Pandas读写操作7.2 数据分析案例7.2.1 普查数据统计分析案例7.2.2 小结第8章 自然语言处理
8.1 Jieba分词基础8.1.1 Jieba中文分词8.1.2 Jieba分词的3种模式8.1.3 标注词性与添加定义词8.2 关键词提取8.2.1 TF-IDF关键词提取8.2.2 TextRank关键词提取8.3 word2vec介绍8.3.1 word2vec基础原理简介8.3.2 word2vec训练模型8.3.3 基于gensim的word2vec实战第9章 从回归分析到算法基础
9.1 回归分析简介9.1.1 “回归”一词的来源9.1.2 回归与相关9.1.3 回归模型的划分与应用9.2 线性回归分析实战9.2.1 线性回归的建立与求解9.2.2 Python求解回归模型案例9.2.3 检验、预测与控制第10章 从K-Means聚类看算法调参
10.1 K-Means基本概述10.1.1 K-Means简介10.1.2 目标函数10.1.3 算法流程10.1.4 算法优缺点分析10.2 K-Means实战第11章 从决策树看算法升级
11.1 决策树基本简介11.2 经典算法介绍11.2.1 信息熵11.2.2 信息增益11.2.3 信息增益率11.2.4 基尼系数11.2.5 小结11.3 决策树实战11.3.1 决策树回归11.3.2 决策树的分类第12章 从朴素贝叶斯看算法多变 193
12.1 朴素贝叶斯简介12.1.1 认识朴素贝叶斯12.1.2 朴素贝叶斯分类的工作过程12.1.3 朴素贝叶斯算法的优缺点12.2 3种朴素贝叶斯实战第13章 从推荐系统看算法场景
13.1 推荐系统简介13.1.1 推荐系统的发展13.1.2 协同过滤13.2 基于文本的推荐13.2.1 标签与知识图谱推荐案例13.2.2 小结第14章 从TensorFlow开启深度学习之旅
14.1 初识TensorFlow14.1.1 什么是TensorFlow14.1.2 安装TensorFlow14.1.3 TensorFlow基本概念与原理14.2 TensorFlow数据结构14.2.1 阶14.2.2 形状14.2.3 数据类型14.3 生成数据十二法14.3.1 生成Tensor14.3.2 生成序列14.3.3 生成随机数14.4 TensorFlow实战
希望对你有帮助!!!
目前,最知名的预训练模型之一是由OpenAI开发的GPT(Generative Pre-trained Transformer)系列模型。其中,GPT-3是最先进的版本,具有1750亿个参数。这种模型通过在海量互联网文本上进行预训练,可以执行多种自然语言处理任务,如文本生成、文本分类、命名实体识别等。
此外,还有其他机构和公司也发布了自然语言处理的预训练模型,如BERT、RoBERTa、ALBERT等。这些模型在各种语言处理任务上表现出色,被广泛应用于自然语言处理的研究和应用中。
这些预训练模型的优点是可以提供大量的语言知识和语义理解能力,使得使用者可以从中受益,并能够快速应用于各种具体任务。但需要注意的是,这些模型需要在具体任务上进行微调,以适应特定的数据和任务要求。
如何才能成为j***a架构师?我为大家来分析一下?
架构是如何组织你的系统,以达到业务要求,性能要求,具备可扩展性,可拓展性,前后兼容性等。可能涉及到的东西包括了从硬件到软件的方方面面。
J***a架构师首先要熟悉设计模式:Singleton单例模式,Factory工厂模式,Proxy代理模式,Template模板模式,Prototype原型模式等
Spring5:Spring提醒结构,IOC注入原理,AOP设计原理,Spring事务处理机制,SpringMVC,Spring源码分析
Mybatis:Mybatis体系结构,Mybatis核心应用与配置,Mybatis关联查询,与Spring集成,Mybatis源码分析
工程化工具M***en项目工具 Git分布式版本控制 Sonar代码检测微服务架构、分布式 JVM性能调优 J***a并发编程和网络编程 电商项目实战 redis等技术
到了这里很多人都想成为一名优秀的J***a架构师,为了帮助大家进阶J***a中高级、架构师,我准备了一套架构师学习教程还可加入大牛学习圈子,分享SQL优化、微服务架构、分布式 JVM性能调优 J***a并发编程和网络编程 电商项目实战 redis等教程,各种大牛都是3-8年J***a开发者,每天还有12年的架构师做讲解,助你进阶中高级J***a程序员,增值涨薪!需要可关注本头条号,并且发送私信关键词:J***a
首先架构师不是那么好当,技术实力一定要过关,要具有架构师的思想,其次架构师是企业级开发所需的Dubbo框架、zookeper基本原理、redis分布式缓存、JVM性能优化,Nginx+apache+Tomcat集群部署、大数据hadoop,Hbase实时计算spark、storm、数据分析分词和权重等核心技术。
如何成为一个优秀的架构师呢?我用七张图片来告诉大家。
另外的四张图片想成为架构师的可以私信我,每天更新j***a架构师技术视频资料。
大家可以先学习下分布式锁的实现:
链接: 密码: umu3
首先呢,我觉得工作3年左右开始考虑这个事儿是正常的,写了一定的功能,接触了一些框架了,可能遇到了不少坑,也加了不少班,但是忽然想起来做的东西零零散散,找不到精深的方法。
这个问题不是你一个人的问题,也不是做程序才会遇到的问题,只不过是实践科学,基本都是反着来的,先做了,然后找资料再学原理,基于此,如果说你想利用空闲时间正向地梳理这些东西的话,还是先从基础出发(以j***a web系来说,我最熟悉的):
2、框架方面:spring、springmvc(restful的请求原理)、spring boot(这里只是配置和使用,不用急于求成,spring的东西很多)
3、数据库方面(1、mysql、oracle;2、常用连接池:druid、hikari等)
4、rpc:***client,dubbo,thrift,grpc(使用没啥难度、主要是学习这几种典型rpc的架构和使用场景)
5、nosql:redis、mongodb、cassandra、memcache(使用场景、集群方式、常见的数据结构、使用场景、缺点很重要)
6、业务工具(1、POI:用来导入、出excel和word,功能强大~;2、j***ax mail发送邮件;等等)
7、总结一下常用的算法、不一定是面试常考的,基础排序和查找算法、链表的操作、图相关的操作等,实践中可能遇到的少,但是思维要有
8、如果是后端工程师,建议适当做一些前端开发了解一些前端的技术,是你未来更好的架构和理解前端和协作打下基础,这里包括常见的前端框架(angular、vue、react)、打包工具(webpack、gulp等)、原生js的dom操作
到此,以上就是小编对于j***a语言模型的问题就介绍到这了,希望介绍关于j***a语言模型的2点解答对大家有用。