大家好,今天小编关注到一个比较有意思的话题,就是关于学习python推荐教材的问题,于是小编就整理了4个相关介绍学习Python推荐教材的解答,让我们一起看看吧。
python自学哪里找课程?
在网上有很多***可以自学Python课程,比如Coursera、Udemy、Codecademy、edX等在线学习平台都提供了丰富的Python课程。
另外,也可以通过搜索“Python自学课程”来找到很多免费或付费的教程和视频。同时,也可以参考一些知名的编程书籍,比如《Python编程从入门到实践》、《Python核心编程》等。另外,还可以关注一些Python相关的社区和论坛,参与讨论和交流经验。总之,通过这些***可以找到适合自己的Python课程,进行系统的学习和实践。
python属于哪一类书籍?
属于计算机类书籍。
Python由荷兰数学和计算机科学研究学会的Guido van Rossum 于1990 年代初设计,作为一门叫做ABC语言的替代品。 Python提供了高效的高级数据结构,还能简单有效地面向对象编程。Python语法和动态类型,以及解释型语言的本质,使它成为多数平台上写脚本和快速开发应用的编程语言, 随着版本的不断更新和语言新功能的添加,逐渐被用于独立的、大型项目的开发。
所以,Python的书籍,应该属于计算机类别的书籍。
计算机相关专业,有没有什么比较经典的教材推荐(由浅到深)?
先学会python 语言
再学c语言
再学 汇编语言
再学 计算机系统结构
学习完Python《从入门到实践》这本书后,有什么进阶的书值得一看?
首先谢谢邀请,关于进阶可以看一些方向性书籍
python之所以火是因为人工智能的发展,个人整理学习经验仅供参考!
感觉有本书你学的差不多了就基本具备了一名合格的python编程工程师,不过可惜的是这本书没有电子版,只有纸质的。
第 1章 从数学建模到人工智能
1.1 数学建模1.1.1 数学建模与人工智能1.1.2 数学建模中的常见问题1.2 人工智能下的数学1.2.1 统计量1.2.2 矩阵概念及运算1.2.3 概率论与数理统计1.2.4 高等数学——导数、微分、不定积分、定积分第2章 Python快速入门
2.1 安装Python2.1.1 Python安装步骤2.1.2 IDE的选择2.2 Python基本操作2.2.1 第 一个小程序2.2.2 注释与格式化输出2.2.3 列表、元组、[_a***_]2.2.4 条件语句与循环语句2.2.5 break、continue、pass2.3 Python高级操作2.3.1 lambda2.3.2 map2.3.3 filter第3章 Python科学计算库NumPy
3.1 NumPy简介与安装3.1.1 NumPy简介3.1.2 NumPy安装3.2 基本操作3.2.1 初识NumPy3.2.2 NumPy数组类型3.2.3 NumPy创建数组3.2.4 索引与切片3.2.5 矩阵合并与分割3.2.6 矩阵运算与线性代数3.2.7 NumPy的广播机制3.2.8 NumPy统计函数3.2.9 NumPy排序、搜索3.2.10 NumPy数据的保存第4章 常用科学计算模块快速入门
4.1 Pandas科学计算库4.1.1 初识Pandas4.1.2 Pandas基本操作4.2 Matplotlib可视化图库4.2.1 初识Matplotlib4.2.2 Matplotlib基本操作4.2.3 Matplotlib绘图案例4.3 SciPy科学计算库4.3.1 初识SciPy4.3.2 SciPy基本操作4.3.3 SciPy图像处理案例第5章 Python网络爬虫5.1 爬虫基础5.1.1 初识爬虫5.1.2 网络爬虫的算法5.2 爬虫入门实战5.2.1 调用API5.2.2 爬虫实战5.3 爬虫进阶—高效率爬虫5.3.1 多进程5.3.2 多线程5.3.3 协程5.3.4 小结第6章 Python数据存储
6.1 关系型数据库MySQL6.1.1 初识MySQL6.1.2 Python操作MySQL6.2 NoSQL之MongoDB6.2.1 初识NoSQL6.2.2 Python操作MongoDB6.3 本章小结6.3.1 数据库基本理论6.3.2 数据库结合6.3.3 结束语第7章 Python数据分析
7.1 数据获取7.1.1 从键盘获取数据7.1.2 文件的读取与写入7.1.3 Pandas读写操作7.2 数据分析案例7.2.1 普查数据统计分析案例7.2.2 小结第8章 自然语言处理
8.1 Jieba分词基础8.1.1 Jieba中文分词8.1.2 Jieba分词的3种8.1.3 标注词性与添加定义词8.2 关键词提取8.2.1 TF-IDF关键词提取8.2.2 TextRank关键词提取8.3 word2vec介绍8.3.1 word2vec基础原理简介8.3.2 word2vec训练模型8.3.3 基于gensim的word2vec实战第9章 从回归分析到算法基础
9.1 回归分析简介9.1.1 “回归”一词的来源9.1.2 回归与相关9.1.3 回归模型的划分与应用9.2 线性回归分析实战9.2.1 线性回归的建立与求解9.2.2 Python求解回归模型案例9.2.3 检验、预测与控制第10章 从K-Means聚类看算法调参
10.1 K-Means基本概述10.1.1 K-Means简介10.1.2 目标函数10.1.3 算法流程10.1.4 算法优缺点分析10.2 K-Means实战第11章 从决策树看算法升级
11.1 决策树基本简介11.2 经典算法介绍11.2.1 信息熵11.2.2 信息增益11.2.3 信息增益率11.2.4 基尼系数11.2.5 小结11.3 决策树实战11.3.1 决策树回归11.3.2 决策树的分类第12章 从朴素贝叶斯看算法多变 193
12.1 朴素贝叶斯简介12.1.1 认识朴素贝叶斯12.1.2 朴素贝叶斯分类的工作过程12.1.3 朴素贝叶斯算法的优缺点12.2 3种朴素贝叶斯实战第13章 从推荐系统看算法场景
13.1 推荐系统简介13.1.1 推荐系统的发展13.1.2 协同过滤13.2 基于文本的推荐13.2.1 标签与知识图谱推荐案例13.2.2 小结第14章 从TensorFlow开启深度学习之旅
14.1 初识TensorFlow14.1.1 什么是TensorFlow14.1.2 安装TensorFlow14.1.3 TensorFlow基本概念与原理14.2 TensorFlow数据结构14.2.1 阶14.2.2 形状14.2.3 数据类型14.3 生成数据十二法14.3.1 生成Tensor14.3.2 生成序列14.3.3 生成随机数14.4 TensorFlow实战
希望对你有帮助!!!
贵在坚持,自己掌握一些,在工作中不断打磨,高薪不是梦!!!
到此,以上就是小编对于学习python推荐教材的问题就介绍到这了,希望介绍关于学习python推荐教材的4点解答对大家有用。